# DETEKSI KONTAMINAN SOLAR DAN KONTAMINAN LAIN PADA MINYAK SAWIT

Tri Haryati, Donald Siahaan, dan Jenny Elisabeth

### **ABSTRAK**

Kontaminasi dapat terjadi secara disengaja maupun tidak disengaja. Kontaminasi yang disengaja sebagian besar disebabkan oleh oknum-oknum yang tidak bertanggung jawab dengan tujuan mencari keuntungan. Kontaminasi yang tidak disengaja dapat terjadi di kebun ataupun pada saat proses pengolahan. Kasus kontaminan solar pada minyak sawit Indonesia pada akhir 1999 lalu merupakan salah satu contoh kontaminasi yang disengaja. Metode standar untuk deteksi kandungan solar pada minyak sawit belum ada, oleh karena itu Pusat Penelitian Kélapa Sawit mengembangkan metode deteksi kontaminan solar pada minyak sawit. Kontaminan solar pada minyak sawit dipisahkan sebagai bahan yang tidak tersabunkan dari minyak sawit dan kemudian dianalisis menggunakan alat kromatografi gas. Penentuan konsentrasi solar dihitung berdasarkan luas puncak dari komponen hidrokarbon yang terdapat pada solar. Hasil uji repeatability dan reproducibility menunjukkan bahwa masing-masing mempunyai nilai koefisien keragaman lebih kecil dari 10 %. Hal ini menunjukkan bahwa metode penentuan kontaminan solar dengan cara tersebut cukup akurat.

Kata kunci: Minyak sawit, solar, kromatografi gas

### PENDAHULUAN

Beberapa bulan terakhir ini, sejumlah minyak sawit mentah (Crude Palm Oil/CPO) Indonesia tertahan di pelabuhan Rotterdam Belanda karena terkontaminasi solar. Pada pertengahan bulan Oktober 1999, 9,450 ton CPO senilai 3,6 juta USD terkontaminasi 12.000 ppm bahan berbahava atau setara dengan 10,3 ton minyak solar (1,2%) sehingga CPO tersebut ditolak oleh pembeli (1). Pada awal November 1999, jumlah CPO yang terkontaminasi meningkat menjadi 50.000 ton dengan konsentrasi solar 6.000 ppm (2). Pada saat itu, minyak sawit Indonesia terancam boikot internasional dan harga CPO Indonesia turun Rp 16,-/kg. Pada akhir November 1999, jumlah CPO yang terkontaminasi menjadi 85.000 ton dengan konsentrasi solar 17.000 ppm (3). Peristiwa tercemarnya CPO oleh solar mengakibatkan kerugian pada pihak produsen dan petani sawit dan memperburuk citra industri minyak sawit Indonesia.

Menurut standar mutu CPO (SNI-2901-1992), parameter mutu yang dipersyaratkan adalah asam lemak bebas (maksimum 5%), kadar kotoran (maksimum 0,05%), dan kadar air (maksimum 0,45%) (4). Berdasarkan persyaratan tersebut, umumnya CPO dari PT Perkebunan Nusantara maupun dari Swasta telah memenuhi kriteria untuk dapat diekspor.

Kontaminasi solar pada CPO yang terjadi akhir-akhir ini diduga akibat ulah oknum-oknum yang tidak bertanggung jawab yang melakukan tindak kriminalitas dengan mencampurkan solar ke dalam CPO. Pihak produsen maupun pedagang pengumpul dan konsumen perlu mengetahui besarnya pengaruh negatif bahan

pencemar solar terhadap kesehatan, serta kemungkinan adanya bahan pencemar lain selain solar yang terdapat dalam CPO baik yang terjadi secara tidak sengaja maupun yang sengaja.

Metode analisis untuk deteksi kontaminan solar pada CPO sampai saat ini belum ada. Pada tulisan ini disajikan uraian singkat tentang kemungkinan timbulnya kontaminan lain pada CPO selain solar dan membahas metode analisis untuk deteksi solar sera cara penanggulangannya yang telah dikembangkan oleh Pusat Penelitian Kelapa Sawit.

## KONTAMINAN PADA MINYAK SAWIT DAN PRODUK TURUNANNYA

Kontaminasi pada minyak pangan yang sengaja dilakukan oleh oknumoknum yang tidak bertanggung jawab dengan tujuan untuk mencari keuntungan tidak hanya terjadi di Indonesia. Di India, pernah terjadi penukaran bahan baku pembuatan margarin dengan minyak babi atau minyak pangan lainnya yang harganya relatif lebih murah (10). Tahun 1968 di Jepang, minyak makan dari dedak padi (rice bran oil) tercemar oleh senyawa polychlorinated biphenyl (PCB) dan mengakibatkan kematian sekitar 1.600 orang (9).

Kontaminasi yang tidak disengaja dapat terjadi di kebun ataupun pada proses pengolahan. Penggunaan pestisida berlebih pada saat mendekati panen dapat mengakibatkan terjadinya pencemaran pada buah sawit dan selanjutnya mencemari produk minyak sawitnya. Penggunaan bahan peralatan pemeroses yang mengandung logam berat tanpa dilapisi bahan pelindung seperti epoksi akan mengakibatkan tercemarnya minyak sawit oleh logam-logam tersebut. Penggunaan minyak terhidrogenasi sebagai

bahan baku pembuatan margarin akan meningkatkan kandungan asam lemak *trans*. Penggunaan minyak goreng yang berulangulang dapat mengakibatkan terbentuknya senyawa polar (aldehid dan keton) dan polimer dari asam lemak bebas atau trigliseridanya yang bersifat toksik bagi hati dan ginjal (7). Uraian yang lebih jelas tentang kemungkinan timbulnya bahan pencemar, sumber pencemaran pada minyak sawit dan produk turunannya serta cara pencegahannya dapat dilihat pada Tabel 1.

## ANALISIS KONTAMINAN SOLAR PADA MINYAK SAWIT

Prinsip analisis kontaminan solar pada CPO adalah dengan memisahkan fraksi solar sebagai bahan yang tidak tersabunkan dari CPO dan kemudian dianalisis secara kromatografi gas (GC) menggunakan kolom kapiler. Gas hidrogen digunakan sebagai gas pembawa dengan kecepatan alir 50 ml/menit. Penentuan konsentrasi solar dihitung berdasarkan luas puncak dari komponen hidrokarbon yang terdapat pada solar.

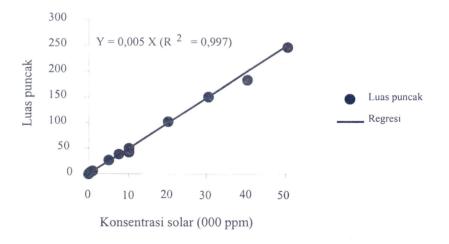
Tahap pertama adalah membangun kurva standar antara konsentrasi solar (ppm) dengan luas puncaknya. Untuk mengetahui ketepatan alat dan ketepatan metode penyediaan contoh dilakukan uji repeatability dan reproducibility. Uji repeatability dilakukan dengan cara menganalisis lima batch contoh dengan tingkat kontaminan rendah (1-10 ppm), tingkat kontaminan sedang (11-25 ppm) dan tingkat kontaminan tinggi (>25 ppm) yang masing-masing diulang sebanyak lima kali. Uji reproducibility dilakukan dengan cara menganalisis satu batch contoh yang dianalisis oleh tiga orang petugas laboratorium dan masing-masing petugas melaku-

Tabel 1. Kontaminan pada CPO dan produk turunannya

| Cara menghilangkan<br>pencemaran dan pencegahan | Distilasi vakum dari minyak sawit untuk memisahkan kontaminan solarnya     Menindak tegas oknum-oknum yang tidak beringgung jawan tidak beringgung jawan.     Melakukan pengawasan yang ketat dan memeriksa kebersihan tangki transportasi | Distilasi vakum dari minyak sawit untuk<br>memisahkan kontaminan pelarut organik     Melakukan pengawasan yang ketat dan<br>memeriksa residu pelarut pada tangki<br>transportasi | Sulit dihlangkan<br>- Menggunakan peralatan pengolahan,<br>transportasi yang terbuat dan bahan<br>stainless stell                          | - Proses deodorisasi dengan suhu tinggi dan tekanan rendah dapat menurunkan kandungan pestsidaherbisida - Kontro penggunaan pestsida dan herbisida dikebun pada saat hampir panen | Pemanasan pada suhu tinggi dengan<br>waktu yang lama     Pengawasan terhadap mutu buah sawit<br>(langan disimpan lama)                             | - Sulit dihilangkan<br>- Sertifikasi makanan halal                                                                                                                                                | Sulit drhilangkan     Menghinan pengeses hirtogenasi minyaklemak yang digunakan sebagai bahan baku pangan. Salah satu alternatif minyak hidrogenasi adalah stearin sawit. |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deteksi pencemaran                              | Kromatografi gas (GC)                                                                                                                                                                                                                      | 29                                                                                                                                                                               | Atomic Absorption<br>Spectrophotometer (AAS).                                                                                              | GC<br>Kromatografi cair tekanan<br>tingsi (HPLC)                                                                                                                                  | HPLC                                                                                                                                               | Differential scanning calorimetry (DSC)     HPLC                                                                                                                                                  | 00                                                                                                                                                                        |
| Batas ambang                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                  | - Fe, 2s-75 mg/hari<br>- Cr, 20 ppm dalam diet<br>- Ni, < 250 ppm dalam diet<br>- Cu, 20-100 ppm dalam diet                                | Contoh untuk dipterex<br>LD50 pada tikus jantan 500 mg/kg                                                                                                                         | Contoh untuk kacang tanah (maksimum<br>,0,36 mg/kg)                                                                                                |                                                                                                                                                                                                   | Anjuran aman dikonsumsi manusia<br>apabila kandungan asam lemak trans <<br>0,5 gr per penyajian                                                                           |
| Efek pencemaran                                 | Beberapa komponen dan derivat minyak<br>bersifar merusak hat, ginjal dan paru-paru<br>atau bersifat karsinogenik<br>Menambah biaya proses pengolahan                                                                                       | Merusak hati, ginjal dan paru-paru.<br>Beberapa pelarut bersitat arsinogenik<br>Menambah biaya proses pengolahan                                                                 | Merusak hati dan ginjal<br>Logam berat dapat bertindak sebagai pro-<br>oksidan sehingga mempercepat penurunan<br>mutu minyak sawit         | Merusak hati dan ginjal<br>Menurunkan mutu yang mengakibatkan<br>penurunan harga                                                                                                  | Mikosin dapat terakumulasi pada jaringan<br>adiposa<br>Merusak hati serta organ-organ tubuh<br>lainnya seperti ginjal pankreas, usus dan<br>empedu | - Alasan religious                                                                                                                                                                                | - Penyumbatan pembuluh darah                                                                                                                                              |
| Sumber pencemaran                               | Dikontaminasi oleh oknum-<br>oknum yang tidak bertanggung<br>jawab Jawab Alat transportasi (tangki trok, -<br>tangki kapal)                                                                                                                | - Alat transportasi (tangki truk, tangki kapal)                                                                                                                                  | Peralatan pada proses pengdahan, tangki bruk,tangki - Apal dan pira transfer - Penggunaan pupuk dan pestisida pada perkebunan kelapa sawit | Kontaminasi pada saat di kebun -<br>Minyak sawil merupakan hasii - dad proses progepresan buah<br>sawit, sebingga ada<br>kemungkinan terbawanya<br>residu pesisida pada minyak    | . Kontaminasi dari jamur yang<br>ada pada buah sawit                                                                                               | Pencampuran pada saat proses - pembuahan margarin, shortening, vanaspati, dll. Suatu studi menunjukkan bahwa beherapa produk vanaspati di India mengandunn lemak babi india mengandunn lemak babi | Minyak yang terhidrogenasi dalam pembualan<br>mangarin, shortening,<br>vanaspati, dil                                                                                     |
| Bahan pencemar                                  | Minyak solar dan minyak<br>bumi laimya (kerosene,<br>diesel fuel)                                                                                                                                                                          | Pelarut organik<br>(seperti heksana,<br>petroleum eter)                                                                                                                          | Logam berat<br>(seperif Al Fe.Cr.Ni,Cu,Cd)<br>(12, 16)                                                                                     | Pestisida dan herbisida<br>(5)                                                                                                                                                    | Mikatoksin<br>seperti aflatoksin,<br>ochratoxin,vomitoksin (9)                                                                                     | Minyak edibel lain seperti<br>lemak babi (10)                                                                                                                                                     | Asam lemak <i>trans</i> (8)                                                                                                                                               |
| 8                                               | -                                                                                                                                                                                                                                          | 2                                                                                                                                                                                | m                                                                                                                                          | 4                                                                                                                                                                                 | ro                                                                                                                                                 | 9                                                                                                                                                                                                 | ~                                                                                                                                                                         |

| Cara menghilangkan<br>pencemaran dan pencegahan | Distilasi vakum atau dengan<br>menggunakan kolom pemisah<br>Menghindan penggunaan minyak<br>goreng bekas                               | Menggunakan kolom pemisah<br>Pengawasan terhadap mutu minyak<br>Menghindan penggunaan minyak<br>goreng bekas                                                                                                                                                                                                                                                            | Sulit dihllangkan<br>Pengawasan terhadap mutu minyak<br>Menghindan penggunaan minyak<br>goreng bekas                                                                                                                                                                                                                             | Teknologi membran<br>Pengawasan terhadap mutu minyak                                                                                                                                                                                                                               | Suit dihilangkan<br>Penanganan dan penyimpanan dengan<br>menghindari cahaya dan panas secara<br>langsung | Sult dihilangkan<br>Menghindari penggunaan bahan bakar<br>(fuel) pada proses pengolahan |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Deteksi pencemaran                              | Kromatografi kolom atau kromatografi lapis tipis (TLC)                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                       | HPLC                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                    | Gravimetri                                                                                               |                                                                                         |
| Batas ambang                                    | Senyawa polar sekitar 25-27% dari<br>jumlah konsumsi lemak                                                                             | Hasil oksidası minyak antara lain (ppm): hidrokarbon, 490-2150<br>furan Ireautshittisi, 2-27<br>Vinil alkohol, 0,5-3<br>1-alkene, 0,002-9<br>2-alkene, 0,04-1<br>alkana, 0,04-1<br>trans, trans-2,4-alkadienal, 0,004-0,3<br>alkadienal etiroslasi, 0,0002-0,1<br>csalkenal terioslasi, 0,0003-0,1<br>trans, cis-alkadienal, 0,0002-0,006<br>vinil keton, 0,00002-0,007 | Untuk smoked food diperbolehkan<br>1 ppb                                                                                                                                                                                                                                                                                         | Spesifik untuk produk tertentu sebagai contoh di Amerika Senikat, produk-produk makarana dar kentarag sekifar 50 ppm dan shortening 200 ppm. Di Kanada adau Eropa THACh diada beleh digunakan untuk makaran Penggunaan antoksidan Bert atau BHA unumnya digunakan maksimum 200 ppm | <100 ng/hari                                                                                             |                                                                                         |
| Efek pencemaran                                 | Merusak hati dan ginjal<br>Menurunkan mutu minyak sawit                                                                                | - Merusak hati dan ginjal<br>- Menurunkan mutu minyak sawit                                                                                                                                                                                                                                                                                                             | - Karsinogenik                                                                                                                                                                                                                                                                                                                   | Merusak hati dan ginjal<br>Karsinogenik                                                                                                                                                                                                                                            | - Karsinogenik                                                                                           | - Berat lahir rendah<br>- Hiperpigmentasi<br>- Kelainan pada pertumbuhan gigi           |
| Sumber pencemaran                               | Minyak goreng bekas (sudah digunakan lebih dari empat kali) - Terdapat kemungkinan Terdapat kemungkinan CPO dengan minyak goreng bekas | Hasil polimerisasi dan oksidasi pada minyak goreng yang digunakan berulang-ulang digunakan berulang-ulang Terdapat kemungkiran terjadinya proses pentukaran CPO dengan minyak goreng bekas                                                                                                                                                                              | Dari minyak bumi  Hasil degradasi pada minyak orenny yang gunakan berulang-ulang. Subur sudi menunjukkan baliwa dalam menunjukkan baliwa dalam minyak gereng bekas terdapat (4.4.5 ppb benzo(a)pyrene ((ktts. 1996) Pada daging panggang (1.4.5 ppb); sata kambing (2.5 ppb); kan asap Jepang (37 ppb); kan asap Jepang (37 ppb) | Penggunaan antioksidan sintelik yang over dosis pada minyak goreng                                                                                                                                                                                                                 | - Penggunaan kemasan<br>polyetilene, tetapi dengan<br>penyimpanan yang kurang baik                       | . Penggunaan bahan bakar (fuel) pada proses deodorisasi                                 |
| Bahan pencemar                                  | Senyawa-senyawa polar dan polimer (11)                                                                                                 | Senyawa-senyawa<br>hasil oksidasi (13)                                                                                                                                                                                                                                                                                                                                  | Вепzo(а)рутеле (9)                                                                                                                                                                                                                                                                                                               | Antioksidan sintetik (14)                                                                                                                                                                                                                                                          | Polyetilene (6)                                                                                          | Polychlorinated<br>Bipheny (PCB) (9)                                                    |
| 2                                               | ω                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                                  | 12                                                                                                       | 13                                                                                      |

kan empat kali ulangan. Tahapan terakhir adalah uji validasi dari kurva standar. Untuk tujuan ini, disiapkan sejumlah contoh dengan konsentrasi solar yang berbeda dan dianalisis dengan GC. Berdasarkan luas puncak yang diperoleh, dihitung konsentrasi solar yang terkandung dalam contoh dengan menggunakan kurva standar. Konsentrasi solar dari hasil perhitungan kemudian dikorelasikan dengan konsentrasi solar yang sebenarnya.


#### 1. Kurva Standar

Untuk mendapatkan hasil yang cukup mewakili contoh dipersiapkan dengan berbagai konsentrasi dari konsentrasi yang rendah yaitu 1 ppm hingga konsentrasi yang tinggi yaitu 50.000 ppm (Gambar 1).

Kurva standar dibangun dengan menggunakan data luas puncak sebagai peubah tidak bebas (*dependent*), sedangkan konsentrasi solar yang diketahui sebagai peubah bebas (independent). Hasil analisis dengan regresi linier menunjukkan bahwa korelasi antara konsentrasi solar dengan luas puncaknya pada kromatogram GC sangat tinggi ( $R^2 = 0.997$ ).

## 2. Uji "Repeatability" dan "Reproducibility"

Hasil analisis statistik dari uji repeatability disajikan pada Tabel 2 yang menunjukkan bahwa koefisien keragaman dari uji tersebut relatif rendah yaitu dibawah 10%. Demikian juga hasil analisis statistik untuk uji reproducibility yang terlihat pada Tabel 3 menunjukkan koefisien keragaman di bawah 10%. Berdasarkan hasit tersebut dapat dinyatakan bahwa metode analisis untuk deteksi solar pada CPO ini cukup akurat.



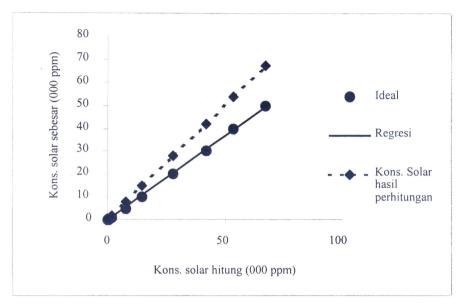
Gambar 1. Kurva standar antara konsentrasi solar dan luas puncak

## 3. Uji Validasi

Uji validasi dilakukan dengan mempersiapkan sejumlah contoh CPO yang mempunyai konsentrasi solar berbeda dan tidak digunakan untuk membangun kurva standar. Hubungan antara konsentrasi solar hasil perhitungan menggunakan kurva standar dan konsentrasi solar yang telah diketahui, relatif tinggi yaitu mempunyai koefisien determinasi 0,999. Jika metode ini seratus persen (ideal) dapat menduga konsentrasi solar yang sebenarnya maka garis regresi untuk konsentrasi solar hasil perhitungan akan sama dengan garis regresi untuk konsentrasi solar yang sebenarnya. Tampak pada Gambar 2 bahwa garis regresi dari konsentrasi solar hasil perhitungan (garis putus-putus) berada di atas garis ideal, oleh karena itu perlu pengaturan kembali persamaan regresi standar yang telah dibangun dengan cara membuat regresi sederhana antara konsentrasi solar hasil perhitungan dengan konsentrasi solar yang sebenarnya. Dengan demikian, hasil perhitungan terakhir dapat mendekati perhitungan yang sebenarnya (garis lurus pada Gambar 2). Model persamaan regresi dari hasil analisis tersebut adalah sebagai berikut:

$$Y = 0.745 \text{ X } (R^2 = 0.999)$$

dimana Y = Nilai konsentrasi yang sebenarnya (ppm)


X = Nilai konsentrasi hasil perhitungan (ppm)

| Tabel 2. Uji repeatability p | ada metode analisis untuk | deteksi solar pada minyak sawit |
|------------------------------|---------------------------|---------------------------------|
|------------------------------|---------------------------|---------------------------------|

| Tingkat     | Batch | Ulangan | Rerata (ppm) |       | Repeatability |           |
|-------------|-------|---------|--------------|-------|---------------|-----------|
| kontaminasi | 9     |         | Batch        | Level | SD            | Koefisien |
| (Level)     |       |         |              |       |               | keragaman |
| Rendah      | 1     | 5       | 7,7          |       | 0,122         | 0,017     |
|             |       |         |              | 8,9   |               |           |
|             | 2     | 5       | 10,0         |       | 0,677         | 0,075     |
| Sedang      | 3     | 5       | 18,7         |       | 0,661         | 0,040     |
|             |       |         |              | 21,9  |               |           |
|             | 4     | 5       | 25,0         |       | 1,616         | 0,072     |
| Tinggi      | 5     | 5       |              | 177,0 | 13,201        | 0,086     |

Tabel 3. Uji reproducibility pada metode analisis untuk deteksi solar pada minyak sawit

|         |         | Repe         |       | ıtability              |  |
|---------|---------|--------------|-------|------------------------|--|
| Petugas | Ulangan | Rerata (ppm) | SD    | Keragaman<br>Koefisien |  |
| I       | 4       | 41,1         | 0,035 | 0,097                  |  |
| II      | 4       | 42,3         | 0,030 | 0,081                  |  |
| III     | 4       | 43,2         | 0,037 | 0,098                  |  |



Gambar 2. Kurva regresi antara konsentrasi solar hasil perhitungan dan konsentrasi solar sebenarnya

## PEMISAHAN SOLAR DARI CPO YANG TERKONTAMINASI

Solar atau minyak diesel mempunyai kisaran titik didih yaitu 205-420°C pada tekanan 1 atmosfer (15, 17). Dalam proses deodorisasi CPO yang umum diterapkan di pabrik rafinasi CPO digunakan suhu 240-270°C dengan tekanan 3 Torr. Oleh karena itu, jika solar terdapat dalam CPO, selama proses deodorisasi, solar akan teruapkan bersama-sama dengan fraksi *Palm fatty acid destilate* (PFAD).

Penggunaan suhu yang lebih tinggi diduga akan menyebabkan kerusakan kimiawi pada CPO dengan terbentuknya polimer-polimer dan senyawa-senyawa teroksidasi (18), yang akan menurunkan kualitas sifat kimia dan fisik serta nutrisi produk akhirnya. Beberapa senyawa yang terbentuk akibat suhu tinggi tersebut bersifat karsinogenik.

Waktu retensi dalam proses deodorisasi CPO tersebut tidak perlu diperpanjang, karena waktu retensi yang lebih lama tidak sepenuhnya membantu proses pelepasan solar dari CPO, bahkan dapat menyebabkan degradasi CPO menjadi polimer-polimer dan senyawa-senyawa teroksidasi. Selain itu, kapasitas olah menurun dan biaya produksi meningkat, tanpa memberikan manfaat berarti terhadap daya ekstraksi solar yang mengkontaminasi CPO. Proses deodorisasi bertingkat juga tidak akan meningkatkan secara nyata efisiensi pemisahan solar dari CPO, karena pemisahan solar dari CPO dengan proses deodorisasi hanya mengandalkan daya

menguap yang dipengaruhi oleh kombinasi faktor suhu dan tekanan. Dengan demikian, deodorisasi bertingkat hanya akan menyebabkan penurunan kapasitas olah dan peningkatan biaya produksi.

Dengan demikian, suhu operasional, waktu retensi yang lazim diterapkan di pabrik rafinasi sudah cukup menjamin seluruh komponen solar akan terpisahkan.

#### KESIMPULAN

Analisis kontaminasi solar pada CPO dapat dilakukan dengan urutan kerja ekstraksi solar dengan cara penyabunan dan kuantifikasi komponen-komponen kimia solar dengan teknik kromatografi gas kolom kapiler. Akurasi analisis kontaminasi solar yang sangat baik sebagaimana dibuktikan oleh uji repeatability dan reproducibility dengan koefisien keragaman di bawah 10%. Validitas teknik analisis juga sangat baik, dan sensitivitasnyapun tinggi karena dapat mendeteksi kontaminasi pada taraf l ppm solar.

Proses deodorisasi (yang lazim digunakan di pabrik rafinasi minyak sawit) dapat digunakan untuk memurnikan CPO yang terkontaminasi solar, tanpa perubahan kondisi operasi.

### DAFTAR PUSTAKA

- ANONIM. 1999. Pusat Pemasaran Sawit (PPS) PTPN akan uji CPO terkontaminasi. Bisnis Indonesia, 16 Oktober 1999.
- ANONIM. 1999. Ulah ninja sawit, 50 ribu ton cpo tercemar. Waspada, 2 November 1999.
- ANONIM. 1999. Boikot Internasional bakal hancurkan perkebunan sawit. Kompas, 4 November 1999
- ANONIM. 1992. Standar mutu crude palm oil (CPO). SNI-2901-1992. Dewan Standardisasi Nasional - DSN.

- BAYER. 1972. Dipterex, Insecticide with stomach and contach poison action, Technical Information. Bayer Pflanzenschutz, Leverkusen.
- BENFENATI, E. E. NATANGELO, E. DAVOLI, and FANELLI. 1996. Packaging materials: Migration of toxin components. In. Bailey's Industrial Oil and Fat Products, John Wiley & Sons, Inc., New York: 270.
- DOBARGANES, M.C. and G. MARQUEZ-RUIZ. 1996. Dimeric and higher oligomeric triglycerides. In. Deep Frying. AOCS Press, Champaign: 89-111.
- FDA, 1999. Food labeling: Trans fatty acids in nutrition labeling, nutrient content claims, and health claims (Docket no. 94P-0036). USA.
- KITTS, D. 1996. Toxicity and safety of fats and oils. In. Bailey's Industrial Oil and Fat Products, John Wiley & Sons, Inc., New York: 215-280.
- LAMBELET, P. 1983. Detection of pig and buffalo body fat in cow and buffalo ghees by diffrential scanning calorimetry. J. Am. Oil Chem. Soc. 57: 364-366.
- MARQUEZ-RUIZ, G. and M.C. DOBARGANES.
   1996. Nutritional and Physiological effects of used frying fats. In. Deep Frying. AOCS Press, Champaign: 160-182.
- MERTZ, W. 1987. Trace elements in human and animal nutrition. 5th ed. Academic Press, Inc., California.
- MIN, D.B. 1998. Lipid oxidation of edible oil. In. Food Lipids, Chemistry, Nutrition, and Biotechnology. Marcel Dekker, Inc., New York: 283-296.
- REISCHE, D., D.A. LILLARD and R.R. E. MILLER. 1998. Antioxidants. In. Food Lipids, Chemistry, Nutrition and Biotechnology. Marcel Dekker, Inc., New York: 423-448.
- SEADER, J.D. and Z.M. KURTYKA. 1984. Distillation. In. Perry's Chemical Engineers' Handbook. McGraw-Hill Book Co., New York: 13-73.
- SUTARTA, E.S. dan Z. POELOENGAN. 1999. Masalah logam berat pada tanaman kelapa sawit. WARTA PPKS, 7(1): 23-30.
- SUTARTI, M., R.N. RAHAYU dan RAHARTRI.
   1998. Pemurnian kembali minyak pelumas bekas. Pusat Dokumentasi dan Informasi Ilmiah, LIPI, Jakarta.
- WEISS, T. J. 1970. Food oils and their uses. The Avi Publishing Co., Inc., Westport.